(.

Operating the Open Core

Ryan Uber

@ryanuber

https://packer.10

What 1s Packer?

« Create machine and container 1mages
« For multiple platforms

« From a single source configuration

« Create machine and container 1mages

.’I AWS ~ Services v lit Ryan Uber ¥ N. Virginia ¥ Support v

1. Choose AMI 2. Choose Instance Type 3. Configure Instance 4. Add Storage 5. Tag Instance 6. Configure Security Group 7. Review
Step 1: Choose an Amazon Machine Image (AMI) Cancel and Exit
Quick Start 11050 of 61,072 AMIs > D]
Q X
My AMIs
amzn-ami-hvm-2015.09.1.x86_64-gp2 - ami-60b6c60a m
AWS Marketplace

Amazon Linux AMI 2015.09.1 x86_64 HVM GP2 64-bit
Community AMIs

Root device type: ebs Virtualization type: hvm

v Operating system ® 2R(;-I5I§I£-974.2_HVM_GA-20151112-x86_64-1-HourIy2-GP2 - ami-
a

Amazon Linux) 64-bit
Provided by Red Hat, Inc.

Cent OS ak

Debian O Root device type: ebs Virtualization type: hvm

Fedora o

Pt i suse-sles-12-sp1-v20151215-hvm-ssd-x86_64 - ami-b7b4fedd m
= d

Reproducible?
Maintainable?

Automatic?

Encapsulation

i
—- packer.json
— M scripts

—- base.sh

—- app.sh

Provisioners

* Basic shell scripts
* Puppet

* Chef

* File uploads

* Many more...

Uniformity

> packer build ./packer.json

Predictability

R~ C=up

« For multiple platforms

Build these all separately?

Log 1n to platform

Create and start an 1nstance
SSH to 1nstance

Copy scripts / binaries

Run commands

Shutdown

Snapshot

Log 1n to platform

Create and start an 1nstance
SSH to 1nstance

Copy scripts / binaries

Run commands

Shutdown

Snapshot

FOR EVERY PLATFORM!?

Log 1n to platform
cate and start an insAtance
SSH Xp 1nstance
Copy stxipts / binaries
Run commangs
Shutdown
Snapshgk

OR EVERY PLAREORM!?

Builders

1.Expose platform-specific setup
instructions

2.Provide a common hand-off to
provisioning scripts

Builders

"type": "amazon-ebs",

"access key": "YOUR KEY HERE",
"secret key": "YOUR SECRET KEY HERE",
"region": "us-east-1",

"source ami": "ami-72b9%e018",
"instance type": "t2.micro",

"ssh username": “ubuntu",

"ami name": "packer-quick-start {{timestamp}}"

"type": "googlecompute",

"account file": "account.json",

"project id": "my-project"”,

"source image": "debian-7-wheezy-v20150127",
"zone": "us-centrall-a"

« From a single source configuration

From the ground up

VMware
Virtualbox
QEMU / KVM
Parallels

Automated ISO i1nstalls

U .
"boot command": [

"<esc>",

"<esc>",

"<enter>",

"<wait>",

"/install/vmlinuz auto",
console-setup/ask detect=false",
console-setup/layoutcode=us",
console-setup/modelcode=pc105",
debconf/frontend=noninteractive",
debian-installer=en US",
fb=false",
initrd=/install/initrd.gz",
kbd-chooser/method=us",
keyboard-configuration/layout=USA",
keyboard-configuration/variant=USA",
locale=en US",
netcfg/get domain=vm",
netcfg/get hostname=packer",
noapic",
preseed/url=http://{{ .HTTPIP }}:{{ .HTTPPort }}/preseed

’
"<enter>"

Post Processors

Va g ra nt Convert to Vagrant .box format
Publish to HashiCorp Atlas

Atlas

DOC ke r Save locally, publish to hub, etc.

How HashiCorp uses Packer

Building Images for
Production Services

Modify base operating system installation
(“Masterless” puppet single-apply)

Install pre-compiled applications
Prepare service discovery (Consul)

Result is an “immutable” image

Building Images for
Production Services

Only one Packer template (for everything)

> HC ROLE=binstore packer build packer.json

Packer

Puppet

Building Images for
FProduction Services

"variables": {
"role": "{{ env "HC ROLE" }}"

“"type": "puppet-masterless",
"facter": {

"hc_env": "production",
"hc_role": "{{ user “role" }}"

case $hc_role {
'binstore’': {
include hashicorp::role::binstore

}

Building VMware machines
for i1solation

Typical Packer template, VMware provider
* Prepares a “base” disk image, base OS only
* Disk image cloned for each unit of work

« VMware for nested virtualization

Application Compilation

* On-demand buildsfor any application
* Docker for speed and runtime availability

» Post-processors for artifact extraction

Maintaining Vagrant Boxes

e Easy for multiple platforms and architectures

* Post-processor for Vagrant-specific setup

Packer Questions?

Terraform

https://te

What 1s Terraform?

Terraform is a tool to execute infrastructure operations:

« Build
« Combine

 Launch

« Build

 Launch

How do I deploy my app?

Droplets

mg Name

consul-server-nyc3-2

consul-client-nyc3-2

consul-server-sfo1-1

consul-client-sfo1-3

consul-server-ams2-1

consul-client-ams2-2

consul-server-nyc3-1

P @ @ @ O O @

512 MB Memory / 20 GB Disk / NYC3

512 MB Memory / 20 GB Disk / SFO1

512 MB Memory / 20 GB Disk / SFO1

atlas-status-proxy
checkpoint-admin
checkpoint-api
hashibot
hashicorp-automator
hashicorp-gems

e & robot

heroku-postgres-8af

heroku-postgres-8c
@ Administration
heroku-postgres-ael Master data
Passwords
heroku-postgresbd) o Lo e
Invoices

Setings

heroku-postgres-d6|

© Main functions
Storage boxes BT
Servers

Traffic statistics
History

Service

®

Product overview
Ordering

Server bidding
Newsletter

Fault reports

512 MB Memory / 20 GB Disk / NYC3

®

Support
Requests
FAQ

37139.2126

512 MB Memory / 20 GB Disk / AMS2

37139.2125

512 MB Memory / 20 GB Disk / AMS2

10413112013

[) Servers

all data centres ¢ | all types

Server transfers Il Notices of cancellation il Key managem|
v

EX40-SSD (30 TB) #370278
EX40-SSD (30 TB) #370291
EX40-SSD (30 TB) #381963

EX40-SSD (30 TB) #381964

5 days ago

5 days ago

5 davs aao

packer-worker-001]
packer-worker-002]
terraform-worker-001

terraform-worker-002

©2016 Hetzner Online

Legal | Data Privacy | Syste

More v

More v

More v

AWS ~

Amazon Web Services

Compute

EC2

Virtual Servers in the Cloud

EC2 Container Service

Run and Manage Docker Containers
Elastic Beanstalk

Run and Manage Web Apps

Lambda

Run Code in Response to Events

S5WE

Storage & Content Delivery
S3

Scalable Storage in the Cloud
CloudFront

Global Content Delivery Network
Elastic File System PREVIEW
Fully Managed File System for EC2

Glacier
Archive Storage in the Cloud

Import/Export Snowball

Large Scale Data Transport

Storage Gateway
Hybrid Storage Integration

L X N XUNIX J

Database

Developer Tools

CodeCommit

Store Code in Private Git Repositories
e CodeDeploy

Automate Code Deployments
<& CodePipeline
=

“e” Release Software using Continuous
Delivery

Management Tools
CloudWatch

Monitor Resources and Applications
CloudFormation

Create and Manage Resources with
Templates

Config

Track Resource Inventory and
Changes

OpsWorks

Automate Operations with Chef
Service Catalog

Create and Use Standardized
Products

& Trusted Advisor
k4

Ontimiza Parformance and Securitv

* CloudTrail

Track User Activity and AP| Usage
o

-

Internet of Things
AWS loT

Connect Devices to the Cloud

Game Development
& Gamelift

® Deploy and Scale Session-based
Multiplayer Games

Mobile Services

1@ Mobile Hub
“>* Build, Test, and Monitor Mobile Apps

El Cognito

User Identity and App Data
Synchronization

i Device Farm
WP¥ Test Android, FireOS, and iOS Apps
on Real Devices in the Cloud

== Mobile Analytics
Collect, View and Export App
Analytics

SNS

Push Notification Service

Application Services
11; API Gateway
L

W Ruild Nanlov and Manaae APIs

Ryal

Deployment as an FSM

Instance ID « Instance Type ~ Availability Zone ~ Instance State -~ Status Checks ~

i-010c87b7 c3.xlarge us-east-1c @ running @ 2/2 checks ...

i-01468¢81 m3.medium us-east-1b @ running & 2/2checks ...

i-03¢734b0 c3.large us-east-1d @ running & 2/2checks ...

i-0718adb1 t2.medium us-east-1c & running & 2/2checks ...

é é i-07fc34b6 t2.medium us-east-1b @ running & 2/2 checks ...

i-09d0b6e3 m1.small us-east-1c @ running & 2/2checks ...

i-0c4772a4 c3.large us-east-1b @ running & 2/2checks ...

R i-0d492dbb t2.medium us-east-1c @ running @ 2/2 checks ...
C 0 n f l g i-0fc62c86 t2.small us-east-1c @ running & 2/2 checks ...
i-10bc3999 t2.medium us-east-1c @ running & 2/2 checks ...

Terratform Internals

No server component (CLI only)
Human-/machine-readable config

Graph-based (DAG)

Pluggable providers

Terratform Workflow

« Write or make changes to infrastructure configuration
« Deploy new service
« Scale up existing service
« Add new DNS records
« Create databases

« Generate a plan: What steps to realize the changes?
« Add/remove instances
« Create DNS records
« Create databases

« Apply the plan to mutate infrastructure

Step 1: Configuration

resource "aws security group" "allow all" {
name = "allow all"
ingress {
from port = 0
to _port = 65535
protocol = "tcp"
cidr blocks = ["0.0.0.0/0"]
}
}

resource "aws launch configuration" "binstore" {
name "binstore"
"ami-997109f3"
“c3.medium"
["${aws security group.allow all.name}"]

image id
instance_ type
security groups

}

resource "aws autoscaling group” "binstore" {
name “binstore"
launch_configuration "${aws_launch_configuration.binstore.name}"
min_size "2
max_size "2"
availability zones ["us-east-1a"]

}

HCL

https://github.com/hashicorp/hcl
Similar to libucl, nginx

foo = "bar"”

thing "id" {

Comments are supported
property = "value"

}

Step 2: Plan

> terraform plan

Step 2: Plan

availability zones.#: " "1
availability zones.3569565595: "" "us-east-1a"
default_cooldown: " "<computed>"
desired_capacity: " "<computed>"
force_delete: " "o
health_check grace period: " "<computed>"
health_check type: " "<computed>"
launch_configuration: " "binstore"
max_size: . "
min_size: " "

name: " "binstore"
vpc_zone_identifier.#: " "<computed>"
wait_for_capacity timeout: " "16m"

associate public_ip address "o

ebs_block device.#: "<computed>"
ebs optimized: "<computed>"
enable_monitoring: "

image_id: "ami-997109f3"
instance_type: "c3.medium"
key name: "<computed>"

name: "binstore"
root_block device.#: "<computed>"
security groups.#: "

security groups.2200183879: "allow_all"

description: "Managed by Terraform"
egress.#: "<computed>"
ingress.#: "
ingress.1403647648.cidr_blocks.#: "1
ingress.1403647648.cidr blocks.0: 0.0.0.0/0"
ingress.1403647648.from port: 0"
ingress.1403647648.protocol:
ingress.1403647648.security_groups.#:
ingress.1403647648.self:

ingress.1403647648.to_port: "65535"
name: "allow_all"
owner_id: "<computed>"
vpc_id: => "<computed>"

Plan: 3 to add, © to change, © to destroy.

Step 3: Apply

> terraform apply

Step 3: Apply

aws_security group.allow_all: Refreshing state... (ID: sg-3351a94b)
aws_launch_configuration.binstore: Refreshing state... (ID: binstore)
aws_security group.allow_all: Creating...
description: ne
egress.#: "
ingress.#: ne
ingress.1403647648.cidr_blocks.#: ne
ingress.1403647648.cidr_blocks.0: u.
ingress.1403647648.from port: ue
ingress.1403647648.protocol: u.
ingress.1403647648.security_groups.#: ""
ingress.1403647648.self: ne
ingress.1403647648.to port: ne
name: " X
owner_id: u. "<computed>"
vpc_id: ue "<computed>"
aws_security group.allow_all: Creation complete
aws_launch_configuration.binstore: Creating...
associate public_ip address: "" "o"
ebs_block device.#: . "<computed>"
ebs_optimized: ne "<computed>"
enable_monitoring: . "1"
image id: " "ami-51855f3a"
instance_type: ne "m3.medium"
key name: " "<computed>"
name: " "binstore"
root_block device.#: " "<computed>"
security groups.#: u. "1
security groups.2200183879: "" "allow all"
aws_launch_configuration.binstore: Creation complete
aws_autoscaling group.binstore: Creating...
availability zones.#: ne "1"

"us-east-la"

"<computed>"

"<computed>"

Ie.

"<computed>"

"<computed>"

"binstore"

-2-

-2-

"binstore"
vpc_zone_identifier.#: u "<computed>"
wait_for_capacity timeout: n. “16m"

aws_autoscaling_group.binstore: Creation complete

"Managed by Terraform"
"<computed>"
nyn

nyn
"0.0.0.6/0"
Ie.

"tcp”

-e-

Ie.

"65535"
"allow all"

A XA RA XA RARAR

AR RARR AR

availability zones.3569565595: "*"
default_cooldown: ue
desired capacity: ne
force_delete: ue
health_check grace period: u.
health_check type: u-
launch_configuration: u-

max_size:
min_size:
name:

XA ERRE R AR

Apply complete! Resources: 3 added, 6 changed, 0 destroyed.

Step 3: Apply

Auto Scaling Group: binstore

Details Activity History Scaling Policies Instances Notifications Tags Scheduled Actions

Launch Configuration binstore

Load Balancers

Desired 2 Availability Zone(s) us-east-1a
Min 2 Subnet(s)
Max 2 Default Cooldown 300
Health Check Type EC2 Placement Group
Health Check Grace Period 0O Suspended Processes
Termination Policies Default Enabled Metrics

Creation Time Tue Feb 16 17:02:56 GMT-800 2016 Instance Protection

Step 3: Apply

Apply is idempotent

~ » terraform apply
aws_security group.allow all: Refreshing state... (ID: sg-154bb36d)
aws_launch_configuration.binstore: Refreshing state... (ID: binstore)

aws_autoscaling group.binstore: Refreshing state... (ID: binstore)

Apply complete! Resources: 0 added, 0 changed, 0 destroyed.

~ »

« Combine

No Provider Lock-1n

Mix and match resources...

Even across providers !

Combining Providers

Use differentiating resources from
numerous providers to get best-of-
the-bunch

Fill in functionality gaps

Makes infrastructure flexible

Code Reuse

Infrastructure code can be very repetitive

Separate environments effectively multiply
the SLOC

Copy/pasting code is error-prone and a
maintenance nightmare

How does Terraform address this?

Modules

Essentially directories of Terraform configuration files

- main.tf
. webapp/

—- main.tf

— - variables.tf

. redis/
- main.tf

. variables.tf

Modules

Callable and paramaterizable, similar to functions

module "web-east" {
source "./webapp"
region = "us-east-1"
count "5"

}

module "web-west" {
source "./webapp"
region = "us-west-1la"
count “10"

}

Modules

Outputs allow logically linking modules

output "redis_address" {

}

default = "${aws instance.redis.public ip}"

Can be thought of as the “return” value of a function.

Modules

Output values can be used as inputs to
other resources or modules

module "db" {
source = "./redis"

}

module "web" {
source = "./webapp"”
dburl = "${module.db.redis address}"

}

Reliability

What happens 1if the "world view” changes?

Reliability

What happens 1if the "world view” changes?

Between separate “plan” runs:
e Terraform will refresh its state

Refreshing Terraform state prior to plan...

aws_security group.allow all: Refreshing state... (ID: sg-154bb36d)
aws_launch _configuration.binstore: Refreshing state... (ID: binstore)
aws_autoscaling group.binstore: Refreshing state... (ID: binstore)

The Terraform execution plan has been generated and is shown below.

Resources are shown in alphabetical order for quick scanning. Green resources
will be created (or destroyed and then created if an existing resource
exists), yellow resources are being changed in-place, and red resources

will be destroyed.

Note: You didn't specify an "-out" parameter to save this plan, so when
"apply" is called, Terraform can't guarantee this is what will execute.

~ aws_autoscaling group.binstore
min_size: "1" => "2"

Plan: 0 to add, 1 to change, 0 to destroy.

Reliability

What happens if the "world view” changes?

Between a “plan” and an “apply”:
« Refreshes state, assumes it
reflects the expected changes

« Better predictability by saving
plans

> terraform plan —out terraform.tfplan

> terraform apply terraform.tfplan

Reliability

What happens if the apply fails?

« Terraform persists its state and exits
« No automatic roll-back

« Lean on idempotency for recovery

Reliability

What happens 1if the state 1is lost?

Bad things .

Terraform can not “import” existing
resources from infrastructure API’s
(although this may come in the future).

Preventitive measures:
e Git or other VCS for local state

« Remote State (s3, Atlas, ..)

Reliability

What happens 1if Terraform 1s
interrupted?

« Partial state 1is still written

« Each resource change recorded
individually

e Terraform can continue from the last save

How HashiCorp uses Terraform

Logical component separation

« Modules used heavily to separate
infrastructure concerns

« Network
« Storage

 Compute

Decoupled from Credentials

Environment variables used to separate
infrastructure code from sensitive credentials

Makes duplicating environments to different
accounts or regions easy

Remote State Only

Remote state provides decentralized management
abilities

Durability and ease-of-access for critical
state information

Caveat: Time-of-check/time-of-use problem
still exists

Blue/Green Deploys

« Specify blue/green artifacts and counts as
module parameters

module "binstore" {
source = "./binstore"

ami blue "ami-29bfl7a2"
nodes blue “8"

nodes green = "O"
ami_green "ami-elb0183a"

Blue/Green Deploys

« Separate resource pools maintained for each
group (blue/green)

variable "nodes green" { }
variable "nodes blue" { }
variable "ami green" { }
variable "ami blue" { }

resource "aws launch configuration" "binstore-green" {
image_id "${var.ami_green}"
instance_type "c3.2xlarge"

}

resource "aws launch configuration" "binstore-blue" {
image id "${var.ami_blue}"
instance type “c3.2xlarge"

}

resource "aws autoscaling group" "binstore- green“ {
name "binstore-green"
launch_configuration "${aws_launch_configuration.binstore-green.name}"
min_size “${var.nodes_green}"
max_size "${var.nodes green}"

}

resource "aws autoscaling group" "binstore-blue" {
name = "binstore-blue"
launch_configuration "${aws_launch_configuration.binstore-blue.name}"
min_size "${var.nodes blue}"
max_size "${var.nodes blue}"

Blue/Green Deploys

Could also be written as separate module calls:

module "binstore-blue" {
source "./binstore"
ami "ami-29bfl17a2"
nodes "8"

}

module "binstore-green" {
source "./binstore"
ami "ami-elb0183a"
nodes "o"

Terraftorm Questions?

Consul

https://consul.1i0

What 1s Consul?

 Service Discovery
« Configuration Management

 Distributed, highly available,
fault tolerant

 Service Discovery

How do I connect things together?

Applications need configuration
Configuration 1is unknown prior to runtime

Configuration may change

Commonly Required Configuration

Hostname or IP address
Port number

Arbitrary, domain-specific metadata

Core Consul Concepts

Nodes — Have IP addresses, services, and
health status (CPU, Mem, etc.)

Services — Have logical names, port
numbers, tags, and health status

Key/Value Pairs — Flat string-to-bytes
mapping for arbitrary storage

Service Discovery

Nodel
192.168.1.10

S 9

16379 :5432

s ([EEE

Services

Service Discovery

Nodel Node2
192.168.1.10 192.168.1.11
S W

16379 :5432

Application Config

{

“postgres addr”: “?7?77,

“redis addr”: “?77?"

}

IP Address

- Or -

DNS Hostname

Application Config

{

“postgres _addr”: “pg.service.consul:5432",

“redis addr”: “redis.service.consul:6379"

}

IP Address

- or -

<:::§E§HostE§E§:::>

Consul DNS

Expose nodes and services:

<nodeID>.node.consul
<servicelID>.service.consul

> dig +short redis.service.consul
192.168.1.10

> dig +short SRV redis.service.consul
1 1 6379 nodel.node.dcl.consul.

Consul DNS

Round Robin by default

»» ANSWER SECTION:
redis.service.consul. 192.168.1.20
redis.service.consul. 192.168.1.10

» s ANSWER SECTION:
redis.service.consul. 192.168.1.10
redis.service.consul. 192.168.1.20

Health Checks

Health Checks

Operational visibility to the emergent
state of the cluster

Intelligently pair requests to services

Graceful degradation, maintenance
windows

Health Checks

Check Types

« Basic script + interval
(Nagios-compatible)

. HTTP/TCP

« TTL-based (dead man’s switch)

Health Checks

Check workload handled
collectively by the cluster

Built-in Serf failure detector

Check status affects service
availability

Health Checks

Check Scopes

« Node — Affect availability of
all services hosted on the node.
Ex: “mem”, “disk”, “cpu”

« Service — Affect availability of
only a specific service.
Ex: “redis-tcp”

Health Checks

Health Checks

Node Checks Service Checks

Health Checks

Health Checks

€ %W

16379 :5432

> dig redis.service.consul
;3 ->>HEADER<<- opcode: QUERY, status: NXDOMAIN

Health Checks

e W

16379 :5432

HER B

> dig +short redis.service.consul

192.168.1.10

Health Checks

Health Checks

> dig redis.service.consul

;3 ->>HEADER<<- opcode: QUERY, status: NXDOMAIN
> dig pg.service.consul

;3 ->>HEADER<<- opcode: QUERY, status: NXDOMAIN

Health Checks

192.168.1.10 192.168.1.20
-
Q/ U J v W
NS :" Q‘L
16379 : 5432 :5432

> dig +short redis.service.consul
192.168.1.20

« Configuration Management

Config Management at Runtime

Applications may have domain-specific
configuration.

Immutable configuration costs time
Manual operator intervention is error prone

Inter-node orchestration may be required

Consul Key/Value Store

Simple input/output over HTTP

> curl -X PUT localhost:8500/v1l/kv/foo -d bar
true

> curl localhost:8500/v1/kv/foo?raw
bar

Consul Key/Value Store

Blocking queries (HTTP long-poll)

> curl -i localhost:8500/v1/kv/foo?raw
X-Consul-Index: 541
bar

> curl localhost:8500/v1/kv/foo?raw&index=541
. Time passes ...

baz

> curl -X PUT localhost:8500/vl/kv/foo -d baz
true

Consul Key/Value Store

Long-poll Limitations
Change 1s not guaranteed
Deduplication on client side
Full-scope response payload

Data safety handled by client

Sessions and Locks

Provide mutual exclusion and
semaphore primitives

Create session
> curl -X PUT localhost:8500/vl/session/create
{"ID":"179¢c685c-179d-al86-ba71-920952e8428c"}

Acquire lock
> curl -X PUT localhost:8500/v1/kv/foo

7acquire= 179c685c-179d-al86-ba71-920952e8428c

Release lock
> curl -X PUT localhost:8500/v1/kv/foo
?release= 179¢c685c-179d-al86-ba71-920952e8428c

Session Invalidation

« Sessions may be linked to checks
« Sessions may provide a TTL

> curl -X PUT localhost:8500/v1/session/create \
-d ‘{

"LockDelay": "15s",

"Node": "Nodel",

"Checks": ["serfHealth", "mem", "cpu"],
"Behavior": "release",
IITTLII : Illh"

Prevents unhealthy nodes from holding a lock

“consul lock”

Wraps session creation, Kkey locking
and releasing around a process.

> consul lock foo “echo hello”
hello

PUT /vl/session/create (394.821us)
GET /v1l/kv/foo/.lock?wait=15000ms (

PUT /v1l/kv/foo/.lock?acquire=45ba86
GET /v1l/kv/foo/.lock?consistent= (2
PUT /v1l/kv/foo/.lock?flags=33047402
GET /v1l/kv/foo/.lock?consistent=&in
GET /v1l/kv/foo/.lock (34.605us) fro
DELETE /v1/kv/foo/.lock?cas=910 (39
PUT /v1l/session/destroy/45ba8642-d6

Supports multiple holders with “-n"” flag

“consul lock”

Useful for rolling deploys/restarts

Fully serialized restarts

> consul lock foo “restart binstore”

binstore start/running, process 3004

Multiple parallel restarts

> consul lock foo -n 2 “restart binstore”

binstore start/running, process 3004

envconsul

https://github.com/hashicorp/envconsul

Bridge Consul K/V and 12-factor apps

Export K/V pairs as environment vars

> envconsul \
-prefix "service/binstore” \
/usr/local/bin/binstore

2016/02/17 12:16:17 [DEBUG] Starting server...

consul-template

https://github.com/hashicorp/consul -template

Render config file templates from
Consul data

{
“posgres addr”: “{{key "“service/pg/addr”}}"”,

“redis addr”: “{{key “service/redis/addr”}}"

}

consul-template

https://github.com/hashicorp/consul -template

First-class services integration

listen web-proxy 0.0.0.0:80
mode http
balance roundrobin

{{range service “binstore”}}
server {{.Node}} {{.Address}}:{{.Port}}
{{end}}

 Distributed, highly available,
fault tolerant

Serf for Cluster Membership

https://serfdom.io

« Gossip-based (SWIM) for scalable
cluster convergence

« Fast failure detection

e Efficient event distribution

Raft for consensus and
replication

Strongly consistent writes
Log replication

Fault tolerance

Raft Trade-offs

More peers = Higher fault tolerance

More peers = Higher consensus complexity,
slower write performance.

3 1 2

5 2
7 3 4

Replication

Leader

Raft Log

{“service”: “foo”}
{“service”: “bar”}

FSM

v

State Store

foo bar

1n Consul

Followers

Raft Log

{“service”: “foo”}
{“service”: “bar”}

SN

J

FSM

v

State Store

foo bar

BoltDB for durable storage

~
Raft Log

{“service”: “foo”}
{“service”: “bar”}

Log recovery in outage
/ scenarios

: Fast, pure-Go on-disk K/V
y storage

MemDB for state storage

In-memory ephemeral store
Indexes native types for speed

Provides fast stale-read access
from any server node

How HashiCorp uses Consul

K/V store for configuration

Store all configuration values in K/V

Even Consul-generated DNS names

service/logstream/statsite_address

statsite-graph.service.consul:8125

Agent on every machine

Consul runs in client-only mode on all
nodes.

Distributes workload, Makes querying
easy.

Exposes node outages

Enables practical use of “consul lock”

Various Niceties

Use /etc/consul.d/ to drop 1n service
configs

Configure VPN to use Consul DNS

|

DSH + consul 1instead of “consul exec”

Consul Questions?

Atlas

https://atlas.hashicorp.com

Packer build monitoring

E0F Triggered by new configuration pushed with Packer Build #19

a‘- Build #19 triggered by ryanuber from Packer 10 months ago

Build completed

1 target built successfully

amazon-ebs amazon-ebs Built succesfully 10 months ago, in 14 minutes finished @ |—

---- Started new build at 2015-04-29 17:19:48.496435501 +0000 UTC

Packer build history

[*1 Builds from Oct 30,2015

' Triggered by new configuration pushed with Packer
- sethvargo

' Triggered by new configuration pushed with Packer
- sethvargo

[Builds from Oct 27,2015

Queued manually in Atlas

ryanube

e}

Queued manually in Atlas

Queued manually in Atlas
sethvargo

A 2

Triggered by new configuration pushed with Packer

pshima

S

-*

| Configs

Queue build

FINISHED @

FINISHED @

FINISHED @

ERRORED

ERRORED

ERRORED @

Terratorm Change History

™ Changesfrom Feb 3,2016

% Queued manually in Atlas
3 A
A A\o D iima

o
o

Merge pull request

Merge pull request #690 from hashicorp/f-scale-down-acm-og

rup

Merge pull request #689 from hashicorp/f-scale-up-acm-meter

re

#691 from hashicorp/f-pshima-consul-backup-update

ernal

APPLIED @

APPLIED @

APPLIED @

APPLIED @

Terraform Run Monitoring

EF Merge pull request #721 from hashicorp/f-ct-stale

& —O Run #2414 triggered by r from GitHub a day ago

Terraform 0.6.9 is out of date (currently 0.6.11). Read about upgrading to 1s and |

0 The plan was finished, saved and confirmed successfully

aday ago

0 Apply executed successfully

aday ago, changes made to your infrastructure are shown below

The state of your infrastructure has been saved to the path
below. This state is required to modify and destroy your
infrastructure, so keep it safe. To inspect the complete state
use the “terraform show™ command.

State path: .terraform/terraform.tfstate

Outpu

Run #2414
>

for the most recent release.

Show Plan

Hide Apply

Terraform Run Lock

Run Lock

This environment is currently locked by hz

You can manually unlock this environment.

Unlock hashicorp/ops

Enhanced Consul UI

Your infrastructure is healthy

84 nodes and 38 services are reporting 477 passing health checks.

Last connection a few seconds ago

EAST-AWS Services (38) Nodes (84) K/V Last connection a few seconds ago @
Filter by name Hide healthy
atlas-consul-meter automator binstore consul
consul-alerts consul-auto-join consul-backup consul-kv
consul-kv-http consul-view-cache consul-view-cache-http graphite

graphite-web

logstream

looker

nomad-view-cache

nomad-view-cache-http

packer-bridge

packer-build-manager

rabbitmq

scada-broker

scada-stats

scada-stats-http

slug-extract

slug-ingress

slug-merge

statsite-box-stats

statsite-graph

statsite-share-stats

storagelocker

terraform-build-manager

terraform-state-parser

+oA21

vaarant.rland httn

viaarant.rlandaanarbar

viaarant.chara.httn

Enhanced Consul UI

Your infrastructure is healthy
84 nodes and 38 services are reporting 477 passing health checks.

Last connection 3 minutes ago

EAST-AWS Services (38) Nodes (84) K/V Last connection a few seconds ago @

< Back to all nodes

node-10-0-4-205 10.0.4.205 5

& Health Checks Hide passing

° CPU Load Average Show Output o Disk Usage Show Output
cpu-load disk-usage

° File Descriptor Utilization Hide Output
fd-usage

640 (0%) of 500000 allowed file descriptors open|WARNING = 350000 (70%), CRITICAL = 450000 (90%)

o Memory Usage Show Output ° Serf Health Status Show Output
mem-usage serfHealth
o Service 'binstore' check Show Output

service:binstore

& Services

binstore

Consul Alerts

Recovered 'serfhealth' on node node-10-0-4-34 PASSING @
node-10-0-4-34 in east-aws at 2:07 pm an hour ago
Critical 'serfhealth' on node node-10-0-4-34 CRITICAL @
node-10-0-4-34 in east-aws at 2:07 an hour ago
Recovered 'mem-usage' on node node-10-0-5-68 PASSING @
node-10-0-5-68 in east-aws 2:00 pm an hour ago

Unhealthy 'mem-usage' on node node-10-0-5-68

node-10-0-5-68 in east-aws at 2 pr an hour ago
Recovered 'mem-usage' on node node-10-0-5-68 PASSING @
node-10-0-5-68 in east-aws at 1:56 | an hour ago

Unhealthy 'mem-usage' on node node-10-0-5-68

node-10-0-5-68 in east-aws at 1:45 pm an hour ago

Consul Alerts Integrations

O Atlas - Consul Alerts
Critical node in hashicorp/ops

node-10-0-5-123 in east-aws
serfHealth (critical)

Node recovered in hashicorp/ops

node-10-0-5-123 in east-aws
serfHealth (passing)

Critical node in hashicorp/ops
node-10-0-4-48 in east-aws
cpu-load (critical)

Critical node in hashicorp/ops
node-10-0-4-48 in east-aws
disk-usage (critical)

Critical service in hashicorp/ops

slug-ingress (50% unhealthy) in east-aws
slug-ingress (critical)

grubernaut 10 M

0.0

Atlas - Consul Alerts J
Node recovered in hashicorp/ops
node-10-0-4-48 in east-aws
disk-usage (passing)

CE

GitHub Integrat

All checks have passed Hide all checks

1 successful check

rrlj v atlas/hashicorp/ops — Terraform plan finished successfully Details

Tha

