
Operating the Open Core

Ryan Uber
@ryanuber

Packer
https://packer.io

• Create machine and container images

• For multiple platforms

• From a single source configuration

What is Packer?

• Create machine and container images

• For multiple platforms

• From a single source configuration

Reproducible?

Maintainable?

Automatic?

Encapsulation

packer.json
scripts

base.sh
app.sh

Provisioners
• Basic	shell	scripts
• Puppet
• Chef
• File	uploads
•Many	more…

Uniformity

> packer build ./packer.json

Predictability

• Create machine and container images

• For multiple platforms

• From a single source configuration

…

Build these all separately?

• Log in to platform
• Create and start an instance
• SSH to instance
• Copy scripts / binaries
• Run commands
• Shutdown
• Snapshot

• Log in to platform
• Create and start an instance
• SSH to instance
• Copy scripts / binaries
• Run commands
• Shutdown
• Snapshot

… FOR EVERY PLATFORM!?

• Log in to platform
• Create and start an instance
• SSH to instance
• Copy scripts / binaries
• Run commands
• Shutdown
• Snapshot

… FOR EVERY PLATFORM!?

Builders
1.Expose platform-specific setup
instructions

2.Provide a common hand-off to
provisioning scripts

Builders

• Create machine and container images

• For multiple platforms

• From a single source configuration

packer.json

base.sh app.sh

From the ground up

VMware
Virtualbox
QEMU	/	KVM
Parallels

Automated ISO installs

Post Processors

Vagrant
Atlas
Docker

Convert	to	Vagrant	.box	format

Publish	 to	HashiCorp Atlas

Save	locally,	publish	 to	hub,	etc.

How HashiCorp uses Packer

Building Images for
Production Services

• Modify base operating system installation
(“Masterless” puppet single-apply)

• Install pre-compiled applications

• Prepare service discovery (Consul)

• Result is an “immutable” image

Building Images for
Production Services

Only one Packer template (for everything)

> HC_ROLE=binstore packer build packer.json

Building Images for
Production Services

Pa
ck
er

Pu
pp
et

Building VMware machines
for isolation

• Typical	Packer	template,	VMware	provider

• Prepares	a	“base”	disk	image,	base	OS	only

• Disk	image	cloned	for	each	unit	of	work

• VMware	for	nested	virtualization

Application Compilation

• On-demand	builds	for	any	application

• Docker	for	speed	and	runtime	availability

• Post-processors	for	artifact	extraction

Maintaining Vagrant Boxes

• Easy	for	multiple	platforms	and	architectures

• Post-processor	for	Vagrant-specific	setup

Packer Questions?

Terraform
https://terraform.io

• Build

• Combine

• Launch

What is Terraform?
Terraform is a tool to execute infrastructure operations:

• Build

• Combine

• Launch

How do I deploy my app?

Deployment as an FSM

Config

Terraform Internals

• No server component (CLI only)

• Human-/machine-readable config

• Graph-based (DAG)

• Pluggable providers

Terraform Workflow

• Write or make changes to infrastructure configuration
• Deploy new service
• Scale up existing service
• Add new DNS records
• Create databases

• Generate a plan: What steps to realize the changes?
• Add/remove instances
• Create DNS records
• Create databases

• Apply the plan to mutate infrastructure

Step 1: Configuration

HCL
https://github.com/hashicorp/hcl

Similar to libucl, nginx

Step 2: Plan

> terraform plan

Step 2: Plan

Step 3: Apply

> terraform apply

Step 3: Apply

Step 3: Apply

Step 3: Apply

Apply is idempotent

• Build

• Combine

• Launch

No Provider Lock-in

main.tf

Mix	and	match	resources…

Even across	providers	!

Combining Providers

• Use differentiating resources from
numerous providers to get best-of-
the-bunch

• Fill in functionality gaps

• Makes infrastructure flexible

Code Reuse

• Infrastructure code can be very repetitive

• Separate environments effectively multiply
the SLOC

• Copy/pasting code is error-prone and a
maintenance nightmare

How does Terraform address this?

Modules
Essentially	directories	of	Terraform	configuration	files

main.tf

variables.tf

main.tf

main.tf

variables.tf

webapp/

redis/

Modules
Callable	and	paramaterizable,	similar	to	functions

Modules
Outputs	allow	logically	linking	modules

Can	be	thought	of	as	the	“return”	value	of	a	function.

Modules
Output	values	can	be	used	as	inputs	to	

other	resources	or	modules

Reliability
What happens if the ”world view” changes?

Reliability
What happens if the ”world view” changes?

Between separate “plan” runs:
• Terraform will refresh its state

Reliability
What happens if the ”world view” changes?

Between a “plan” and an “apply”:
• Refreshes state, assumes it

reflects the expected changes

• Better predictability by saving
plans

> terraform plan –out terraform.tfplan
> terraform apply terraform.tfplan

Reliability
What happens if the apply fails?

• Terraform persists its state and exits
• No automatic roll-back

• Lean on idempotency for recovery

Reliability
What happens if the state is lost?

Bad things . . .

Terraform can not “import” existing
resources from infrastructure API’s
(although this may come in the future).

Preventitive measures:
• Git or other VCS for local state
• Remote State (s3, Atlas, …)

Reliability
What happens if Terraform is
interrupted?

• Partial state is still written
• Each resource change recorded

individually

• Terraform can continue from the last save

How HashiCorp uses Terraform

Logical component separation

• Modules used heavily to separate
infrastructure concerns

• Network

• Storage

• Compute

Decoupled from Credentials

• Environment variables used to separate
infrastructure code from sensitive credentials

• Makes duplicating environments to different
accounts or regions easy

Remote State Only

• Remote state provides decentralized management
abilities

• Durability and ease-of-access for critical
state information

• Caveat: Time-of-check/time-of-use problem
still exists

Blue/Green Deploys

• Specify blue/green artifacts and counts as
module parameters

Blue/Green Deploys
• Separate resource pools maintained for each

group (blue/green)

Blue/Green Deploys

Could also be written as separate module calls:

Terraform Questions?

Consul
https://consul.io

• Service Discovery

• Configuration Management

• Distributed, highly available,
fault tolerant

What is Consul?

• Service Discovery

• Configuration Management

• Distributed, highly available,
fault tolerant

How do I connect things together?

Applications need configuration

Configuration is unknown prior to runtime

Configuration may change

Commonly Required Configuration

Hostname or IP address

Port number

Arbitrary, domain-specific metadata

Core Consul Concepts

Nodes – Have IP addresses, services, and
health status (CPU, Mem, etc.)

Services – Have logical names, port
numbers, tags, and health status

Key/Value Pairs – Flat string-to-bytes
mapping for arbitrary storage

Service Discovery

Node1
192.168.1.10

Services

Checks

:5432:6379

Service Discovery

Node1
192.168.1.10

:5432:6379

Node2
192.168.1.11

:80

?

Application Config

{
“postgres_addr”: “???”,
“redis_addr”: “???”

}

IP Address

DNS Hostname
- or -

Application Config

{
“postgres_addr”: “pg.service.consul:5432”,
“redis_addr”: “redis.service.consul:6379”

}

IP Address

DNS Hostname
- or -

Consul DNS

Expose nodes and services:

<nodeID>.node.consul
<serviceID>.service.consul

> dig +short redis.service.consul
192.168.1.10

> dig +short SRV redis.service.consul
1 1 6379 node1.node.dc1.consul.

Consul DNS

Round Robin by default

Health Checks

Health Checks

Operational visibility to the emergent
state of the cluster

Intelligently pair requests to services

Graceful degradation, maintenance
windows

Health Checks

Check Types

• Basic script + interval
(Nagios-compatible)

• HTTP/TCP

• TTL-based (dead man’s switch)

Health Checks

• Check workload handled
collectively by the cluster

• Built-in Serf failure detector

• Check status affects service
availability

Health Checks

Check Scopes

• Node – Affect availability of
all services hosted on the node.
Ex: “mem”, “disk”, “cpu”

• Service – Affect availability of
only a specific service.
Ex: “redis-tcp”

Health Checks

:5432:6379

Health Checks

:5432:6379

mem cpu redis pg

Node Checks Service Checks

Health Checks

:5432:6379

mem cpu redis pg

Health Checks

:5432:6379

mem cpu redis pg

> dig redis.service.consul
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN

Health Checks

:5432:6379

mem cpu redis pg

> dig +short redis.service.consul
192.168.1.10

Health Checks

:5432:6379

mem cpu redis pg

Health Checks

:5432:6379

mem cpu redis pg

> dig redis.service.consul
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN
> dig pg.service.consul
;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN

Health Checks

:5432:6379

mem cpu redis pg

:5432:6379

mem cpu redis pg

192.168.1.10 192.168.1.20

> dig +short redis.service.consul
192.168.1.20

• Service Discovery

• Configuration Management

• Distributed, highly available,
fault tolerant

Config Management at Runtime

• Applications may have domain-specific
configuration.

• Immutable configuration costs time

• Manual operator intervention is error prone

• Inter-node orchestration may be required

Consul Key/Value Store

Simple input/output over HTTP

> curl -X PUT localhost:8500/v1/kv/foo -d bar
true

> curl localhost:8500/v1/kv/foo?raw
bar

Consul Key/Value Store

Blocking queries (HTTP long-poll)

> curl -i localhost:8500/v1/kv/foo?raw
X-Consul-Index: 541
bar

> curl localhost:8500/v1/kv/foo?raw&index=541
... Time passes ...
baz

> curl -X PUT localhost:8500/v1/kv/foo -d baz
true

Consul Key/Value Store

Long-poll Limitations

• Change is not guaranteed

• Deduplication on client side

• Full-scope response payload

• Data safety handled by client

Sessions and Locks

Provide mutual exclusion and
semaphore primitives

Create session
> curl -X PUT localhost:8500/v1/session/create
{"ID":"179c685c-179d-a186-ba71-920952e8428c"}

Acquire lock
> curl -X PUT localhost:8500/v1/kv/foo
?acquire= 179c685c-179d-a186-ba71-920952e8428c

Release lock
> curl -X PUT localhost:8500/v1/kv/foo
?release= 179c685c-179d-a186-ba71-920952e8428c

Session Invalidation

• Sessions may be linked to checks
• Sessions may provide a TTL

> curl -X PUT localhost:8500/v1/session/create \
-d ‘{

"LockDelay": "15s",
"Node": ”Node1",
"Checks": [”serfHealth", ”mem", "cpu"],
"Behavior": "release",
"TTL": ”1h”

}’

Prevents unhealthy nodes from holding a lock

“consul lock”

Wraps session creation, key locking
and releasing around a process.

> consul lock foo “echo hello”
hello

Supports multiple holders with “-n” flag

“consul lock”

Useful for rolling deploys/restarts

> consul lock foo “restart binstore”
binstore start/running, process 3004

Fully serialized restarts

> consul lock foo -n 2 “restart binstore”
binstore start/running, process 3004

Multiple parallel restarts

envconsul
https://github.com/hashicorp/envconsul

Bridge Consul K/V and 12-factor apps

Export K/V pairs as environment vars

> envconsul \
-prefix ”service/binstore” \
/usr/local/bin/binstore

2016/02/17 12:16:17 [DEBUG] Starting server...

consul-template
https://github.com/hashicorp/consul-template

Render config file templates from
Consul data

{
“posgres_addr”: “{{key “service/pg/addr”}}”,
“redis_addr”: “{{key “service/redis/addr”}}”

}

consul-template
https://github.com/hashicorp/consul-template

First-class services integration

listen web-proxy 0.0.0.0:80
mode http
balance roundrobin

{{range service “binstore”}}
server {{.Node}} {{.Address}}:{{.Port}}

{{end}}

• Service Discovery

• Configuration Management

• Distributed, highly available,
fault tolerant

• Gossip-based (SWIM) for scalable
cluster convergence

• Fast failure detection

• Efficient event distribution

Serf for Cluster Membership
https://serfdom.io

Strongly consistent writes

Log replication

Fault tolerance

Raft for consensus and
replication

Raft Trade-offs

More peers = Higher fault tolerance

More peers = Higher consensus complexity,
slower write performance.

#	of	Peers Fault	Tolerance Quorum Size

3 1 2

5 2 3

7 3 4

Replication in Consul

{“service”:	“foo”}
{“service”:	“bar”}

FSM

State Store

foo bar

Raft Log
{“service”:	“foo”}
{“service”:	“bar”}

FSM

State Store

foo bar

Raft Log

Leader Followers

BoltDB for durable storage

{“service”:	“foo”}
{“service”:	“bar”}

Raft Log

Log recovery in outage
scenarios

Fast, pure-Go on-disk K/V
storage

MemDB for state storage

In-memory ephemeral store

Indexes native types for speed

Provides fast stale-read access
from any server node

How HashiCorp uses Consul

K/V store for configuration

Store all configuration values in K/V

Even Consul-generated DNS names

Agent on every machine

• Consul runs in client-only mode on all
nodes.

• Distributes workload, Makes querying
easy.

• Exposes node outages

• Enables practical use of “consul lock”

• Use /etc/consul.d/ to drop in service
configs

• Configure VPN to use Consul DNS

• DSH + consul instead of “consul exec”

Various Niceties

Consul Questions?

Atlas
https://atlas.hashicorp.com

Packer build monitoring

Packer build history

Terraform Change History

Terraform Run Monitoring

Terraform Run Lock

Enhanced Consul UI

Enhanced Consul UI

Consul Alerts

Consul Alerts Integrations

GitHub Integration

Questions?

Thank you!
Now	come	get	some	stickers!

